CHROMOSOME NUMBERS IN THE COMPOSITAE II. MEIOTIC COUNTS FOR FOURTEEN SPECIES OF BRAZILIAN COMPOSITAE ${ }^{1}$

B. L. Turner and H. S. Irwin

The junior author of this paper spent 5 months during 1958-59 in south-central Brazil collecting Cassia material in connection with a doctoral thesis problem. Since he was routinely collecting bud material of various species of this genus and shipping these air mail to the senior author for meiotic examination, he was able to include, as time and opportunity permitted, occasional bud collections of the family Compositae. The present contribution summarizes the results of a study of this latter material.

METHODS

Chromosome counts were made from pollen mother cell squashes. Buds were collected from plants growing in the field and placed in a freshly mixed solution of 4 parts chloroform ; 3 parts absolute alcohol; 1 part glacial acetic acid and allowed to remain for a period varying from several hours to several weeks. All collections were sent air mail from Brazil to Texas where the young anthers were subsequently removed and squashed in acetocarmine. Camera lucida drawings were made at an initial magnification of ca. 2,000 diameters. Voucher specimens (Table 1) are deposited in the University of Texas Herbarium.

OBSERVATIONS

Eupatorieae - The count for Adenostemma brasilianum ($n=5$) is the lowest so far reported for the tribe Eupatorieae. Mangenot et al., (1957), reported an African species of this genus as $2 n=20$. Apparently the basic number of the genus is $x=5$.

Eupatorium is a large genus with perhaps $400-500$ species, widely distributed in the tropical and subtropical regions of the world with relatively few species extending into temperate regions. The two counts reported in the present paper are both in accord with the basic number, $x=10$. E. kleinioides $(n=20)$ is apparently a tetraploid; however its meio-

[^0]tic configurations, as shown in figure 1, are exceptional in that both asynaptic and paired chromosomes are seen at netaphase I. Paired chromosomes (bivalents), as deternined by observations of a number of cells, varied from 4 to 7. Occasional trivalent associations were also seen. Apomixis as been suspected for other polyploid species of Eupatorium (Turner and Ellison, 1960; Turner and Beaman, unpubl.), put in such cases meiotic chromosomes have been completely asynaptic. It is possible that E. kleinioides is part of an aponictic complex such as exists in the species, Bouteloua curtpendula (Harlan, 1949).
Astereae - Baccharis is a large, predominantly woody, enus with approximately 600 species widely distributed in he tropical and subtropical regions of the New World (Luis, 958). Including the present reports, 9 species have been ounted (Darlington and Wylie, 1956) ; all have been diploid vith $2 n=18$.
Although no certain count could be obtained for Erigeron naximus $(n=40 \pm 4)$ it seems significant to report this umber, the highest count reported for the approximately 25 pecies so far investigated. E. maximus is the single species f the section Leptostelma and probably has the largest lants of any species in the genus; field notes on the voucher ollection reads as follows: "Stout [perennial] herb to $21 / 2$ neters." According to label data on another Brazilian collecion (Y. Mexia 4341, TEX) the species, in certain habitats, eaches 4 meters in height.
Heliantheae - Acanthospermum australe $(n=11)$ is a veedy species of wide distribution. Carlquist (1954) reorted meiotic counts from Hawaiian collections as $n=10$. Ietaphase plates, from which the present counts were made, ere particularly clear (figure 3).
Chromosome counts for Ambrosia $(n=18)$ and Cosmos $n=24$) are consistent with those reported for other species 1 these genera (Wagner \& Beals, 1958 ; Darlington \& W ylie, 956).

Chromosome counts for the closely related taxa Wedelia nd Wulffia are first reports for these genera. Both belong o the subtribe Verbesininae whose genera have been characerized by high basic chromosome numbers. However, in

Figs. 1-8. Camera lucida drawings of meiotic chromosomes, all approximately 1800. Fig. 1. Eupatorium kleinioides $(n=20 ; 7 \mathrm{II}, 26 \mathrm{I})$. Fig. 2. Baccharis mela tomifolia $(n=9$; anaphase of second division). Fig. 3. Acanthospermum austra $(n=11)$. Fig. 4. Ambrosia polystachya $(n=18)$. Fig. 5. Cosmos caudatus $(n=24$ Fig. 6. Wedelia sp. $(n=20)$. Fig. 7. Wulffia baccata $(n=30 \pm 1)$. Fig. 8. Emil coccinea $(n=5)$.

1960] Turner \& Irwin - Chromosome Nos. in Compositae 125

view of the numbers listed for Wedelia (Table 1), it appears likely that both Wedelia and Wulffia have the basic number, $x=10$.

Senecionieae - Baldwin (1946) reported that individuals in five populations of Emilia coccinea in the Amazon Valley and one from southern Florida had $2 n=20$. The present count for this species, $n=5$, is based on material collected at Belo Horizonte in South-central Brazil. Although further study is required, it would appear that two chromosome races of E. coccinea exist, diploid and tetraploid. It would be of considerable interest to determine if both races have been introduced from the Old World, or whether one has arisen in the New.

Cooper (1936) reported Erechtites hieracifolia to have a count of $2 n=40$, this being interpreted by Darlington and Wylie (1956) as indicative of a basic number $x=10$ for the genus. The present count of $n=20$ for E. valerianaefolia is in accord with Cooper's report.

TAble 1. Species of covipositae examined for chromosome numbers

SUMMARY

Meiotic chromosome counts are reported for 14 collections of Brazilian Compositae. These include first reports for 13 species and 2 new generic reports (Wedelia and Wulffia). The highest count yet found for a species of Erigeron (E. maximus, $n=40 \pm 4$) is reported. In addition, a count of $n=11$ for Acanthospermum australe was found not to agree with the count of $n=10$ reported for this weedy species from the Hawaiian Islands. - botany department, uniVERSITY OF TEXAS, AUSTIN.

LITERATURE CITED

Baldwin, J. T., Jr. 1946. Cytogeography of Emilia Cass. in the Americas. Bull. Torr. Bot. Club. 73: 18-23.

Carlquist, S. 1954. In Documented chromosome numbers of plants. Madroño 12: 210.

Cooper, G. O. 1936. Cytological investigations of Erechtites hieracifolia. Bot. Gaz. 98: 348-355.

Darlington, C. D. and A. P. Wylie. 1956. Chromosome atlas of flowering plants. MacMillan Company, New York.

Harlan, J. R. 1949. Apomixis in side-oats grama. Amer. Jour. Bot. 36: 495-499.

Luis, I. T. 1958. Novum index baccharidinarum. Contrib. do Instituto Geobiologico Canoas. 9: 1-35.

Mangenot, S., G. Mangenot, G. Foutrel, and G. de la Mensbruge. 1957. Sur les nombres chromosomiques de 150 espèces d'Angiospermes d'Afrique tropicale. Compte. Rend. Acad. Paris. 245: 559-562.

Turner, B. L. and W. Ellison. 1960. Chromosome numbers in the Compositae. I. Meiotic counts for 25 species of Texas Compositae including 6 new generic reports. Texas Acad. Sci. (in press).

[^0]: ${ }^{1}$ This study was supported by National Science Foundation Grant G 9025.

